

Aircell 7 is an ultraflexible coaxial cable designed for frequencies up to 6 GHz. Due to its low loss in relation to the outer diameter and the small bending radius, the cable can be used for numerous RF applications.

The low attenuation of Aircell 7 is achieved by using advanced manufacturing techniques and low-loss PE-LLC dielectric with a foaming rate of more than 70%. This unique dielectric also offers water resistance and long-term stability. The inner conductor, containing 19 stranded bare copper wires of low oxygen copper (OFC), provides the cable its remarkable flexibility. Further advantages of this cable include the use of double shielding, which is constructed of overlapping 100% tight copper foil and an additional shield braiding of bare copper wires with 85% coverage. The copper foil has an applied PE coating that prevents foil cracking due to short-radius bends. The black PVC jacket of Aircell 7 is UV-stabilized.

Aircell 7 is the right choice when a super flexible, low loss, and microwave-rated cable is required. It can be used for numerous RF applications.

Key features

 $\begin{array}{lll} \mbox{Diameter} & 7.3 \pm 0.2 \mbox{ mm} \\ \mbox{Impedance} & 50 \pm 2 \ \Omega \\ \mbox{Attenuation at 1 GHz/100 m} & 20.44 \mbox{ dB} \\ \mbox{f max} & \mbox{6 GHz} \\ \mbox{Euroclass according to EN 50575} & \mbox{Eca} \end{array}$

Characteristics

- Conductor/screen material according to DIN EN 13602 CuETP-A $\,$
- Jacket material according to DIN EN 50290-2-22 (VDE 0819), compound type TM 52 (HD 624.2)
- Flame-retardant according to IEC 60332-1-2
- Flame-retardant according to UN/ECE-R 118:2019-06 § 6.2.6, ISO 6722-1:2011-10 § 5.22
- · RoHS compliant (Directive 2011/65/EC & 2015/863/EU RoHS 3)
- UV-resistant

Technical Data				
Inner conductor	Stranded copper (Cu) wire			
Inner conductor Ø	1.9 mm (19 × 0.38 mm, 14 AWG)			
Dielectric	foamed cellular polyethylene (PE) with skin			
Dielectric Ø	5.0 mm			
Outer conductor 1	overlapping copper (Cu) foil			
Shielding factor	100%			
Outer conductor 2	Copper (Cu) shield braiding of bare copper wires			
Shielding factor	85 %			
Outer conductor Ø	5.7 mm			
Jacket	PVC black, UV-stabilized			
Weight	70 kg/km			
Min. Bending radius	4 × Ø single, 8 × Ø repeated			

Electrical Data at 20 °C

Temperature range Pulling strength

Capacitance (1 kHz)	78 nF/km
Velocity factor	0.85
Shielding attenuation 1 GHz	≥ 90 dB
DC-resistance inner conductor	≤ 9.0 Ω/km
DC-resistance outer conductor	8.7 Ω/km
Insulation resistance	≥ 10 GΩ*km
Test Voltage DC (wire/screen)	10 kV
Max. voltage	8 kV

-55 to +85 °C transport & fixed installation -40 to +85 °C mobile application

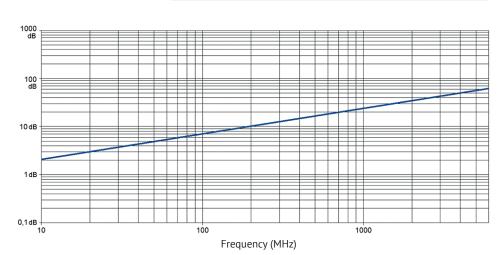
78 pF/m 101 pF/m 102 pF/m

RG 58/U

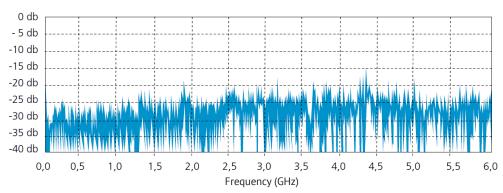
Aircell 7 RG 213/U

Velocity factor	0.85	0.66	0.66
Attenuation(dB/100m)			
10 MHz	2.09	2.00	5.00
100 MHz	5.97	7.00	17.00
500 MHz	13.98	17.00	39.00
1000 MHz	20.44	22.50	54.60
3000 MHz	38.84	58.50	118.00

Typ. Attenuation (dB/100 m at 20 °C)


Capacitance

5 MHz	1.52	1000 MHz	20.44
10 MHz	2.09	1296 MHz	23.60
50 MHz	4.29	1500 MHz	25.73
100 MHz	5.97	1800 MHz	28.50
144 MHz	7.22	2000 MHz	30.29
200 MHz	8.59	2400 MHz	33.82
300 MHz	10.64	3000 MHz	38.84
432 MHz	12.92	4000 MHz	46.66
500 MHz	13.98	5000 MHz	54.19
800 MHz	18.05	6000 MHz	61.66


Max. Power Handling (W at 40 °C)

10 MHz	2.040	2400 MHz	118
100 MHz	620	3000 MHz	104
500 MHz	260	4000 MHz	89
1000 MHz	191	5000 MHz	78
2000 MHz	131	6000 MHz	70

Typ. Attenuation (dB/100 m at 20°C)

Typ. Return Loss

